令和4年度学力検査

B 数 (10 時 30 分~11 時 15 分, 45 分間)

問 題 用 紙

注

意

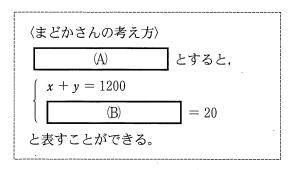

- 1. 「開始」の合図があるまで開いてはいけません。
- 2. 答えは、すべて解答用紙に書きなさい。
- 3. 問題は、 $\begin{bmatrix} 1 \end{bmatrix}$ から $\begin{bmatrix} 5 \end{bmatrix}$ までで、 $\begin{bmatrix} 6 \\ 4 \end{bmatrix}$ で、 $\begin{bmatrix} 6 \\ 4 \end{bmatrix}$ でのでのでは、 $\begin{bmatrix} 6 \\ 4 \end{bmatrix}$ でのでのです。
- 4. 「開始」の合図で、**解答用紙**の決められた欄に**受検番号**を書きなさい。
- 5. 問題を読むとき、声を出してはいけません。
- 6. 「終 了」の合図で、すぐに筆記用具を置きなさい。

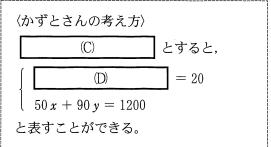
- 1 あとの各問いに答えなさい。(13 点)
 - (1) 8×(-7) を計算しなさい。
 - (2) $\frac{4}{5}x \frac{2}{3}x$ を計算しなさい。
 - (3) $15xy \div 5x$ を計算しなさい。
 - (4) 5(2a+b)-2(3a+4b) を計算しなさい。
 - (5) $(\sqrt{3} + 2\sqrt{7})(2\sqrt{3} \sqrt{7})$ を計算しなさい。
 - (6) y はx に反比例し、グラフが点(-2, 8)を通る。y をx の式で表しなさい。
 - (7) 二次方程式 $2x^2 + 5x 2 = 0$ を解きなさい。
 - (8) 右の表は、あるクラス 20人の通学時間をまとめた ものである。 (ウ) にあ てはまる数が 0.80 以下のと き、 (ア) にあてはまる 数をすべて求めなさい。

通学時間(分)	度数(人)	相対度数	累積相対度数
以上 未満			:
0 ~ 5	2	0.10	0.10
5 ~ 10	4	0.20	0.30
10 ~ 15	7	0.35	0.65
15 ·~ 20	(y)	(1)	(ウ)
20 ~ 25	(工)	(4)	(力)
25 ~ 30	1	0.05	1.00
計	20	1.00	

- | 2 | あとの各問いに答えなさい。(12 点)
 - (1) まなぶさんは、A 組 19 人と B 組 18 人のハンドボール投げの記録について、ノートにまとめている。下の〈まなぶさんがまとめたノートの一部〉の図 1 は、B 組全員のハンドボール投げの記録を記録が小さい方から順に並べたもの、図 2 は、A 組全員のハンドボール投げの記録を箱ひげ図にまとめたものである。

このとき,次の各問いに答えなさい。


- ① B組全員のハンドボール投げの記録の中央値を求めなさい。
- ② 図1をもとにして、B組全員のハンドボール投げの記録について、箱ひげ図をかき入れなさい。
- ③ 図1,図2から読みとれることとして、次の(i)、(ii)は、「正しい」、「正しくない」、「図1,図2からはわからない」のどれか、下のア~ウから最も適切なものをそれぞれ1つ選び、その記号を書きなさい。
 - (i) ハンドボール投げの記録の第1四分位数は、A組とB組では同じである。
 - 「**ア**.正しい
 - イ. 正しくない
 - **しウ**. 図1, 図2からはわからない
 - (ii) ハンドボール投げの記録が27m以上の人数は、A組のほうがB組より多い。
 - 「**ア**.正しい
 - イ. 正しくない
 - **しウ**. 図1, 図2からはわからない


(2) 下の〈問 題〉について、次の各問いに答えなさい。

〈問 題〉

Pさんは家から 1200 m離れた駅まで行くのに、はじめ分速 50 m で歩いていたが、 を t p p ら k s p p ら m で 走ったところ,家から出発してちょうど 20 分後に駅に着 いた。Pさんが家から駅まで行くのに、歩いた道のりと、走った道のりを求めなさい。

は、まどかさんとかずとさんが、〈問 題〉を解くために、それぞれの考え方 で連立方程式に表したものである。

- ① 上の $| (A) | \sim | (D) |$ に、それぞれあてはまることがらはどれか、次の $\mathbf{7} \sim \mathbf{1}$ から 最も適切なものを1つずつ選び、その記号を書きなさい。
 - 「ア. 歩いた道のりをxm, 走った道のりをym
 - $\mathbf{1}$. 歩いた時間をx分, 走った時間をy分

- \cancel{D} . x + y \cancel{L} . x y \cancel{A} . 50x + 90y \cancel{D} . 90x + 50y

 \cancel{E} . $\frac{50}{x} + \frac{90}{y}$ \cancel{D} . $\frac{20}{x} + \frac{50}{y}$ \cancel{D} . $\frac{x}{50} + \frac{y}{90}$ \cancel{D} . $\frac{x}{90} + \frac{y}{50}$

- ② Pさんが家から駅まで行くのに、歩いた道のりと走った道のりを、それぞれ求めなさい。
- (3) 次の図のように、1からnまでの自然数が順に1つずつ書かれたn枚のカードがある。こ のカードをよくきって 1 枚取り出すとき、取り出したカードに書かれた自然数を a とする。 このとき、次の各問いに答えなさい。

- ① n=10 のとき、 \sqrt{a} が自然数となる確率を求めなさい。
- ② $\frac{12}{a}$ が自然数となる確率が $\frac{1}{2}$ になるとき、n の値を<u>すべて</u>求めなさい。

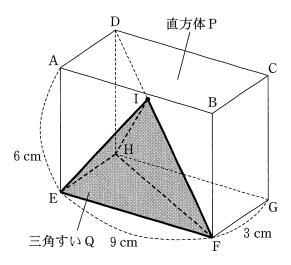
② 次の図のように、関数 $y = \frac{1}{4}x^2$ …⑦のグラフ上に2点A、Bがあり、点Aのx座標が-2、点Bのx座標が4である。3点O、A、Bを結び \triangle OABをつくる。

このとき, あとの各問いに答えなさい。

ただし、原点をOとする。(8点)

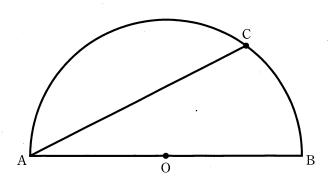
- (1) 点Aの座標を求めなさい。
 - (2) 2点A、Bを通る直線の式を求めなさい。
 - (3) x 軸上のx > 0 の範囲に 2 点 C, D をとり, $\triangle ABC$ と $\triangle ABD$ をつくる。 このとき,次の各問いに答えなさい。

なお,各問いにおいて,答えに√ がふくまれるときは,√ の中をできるだけ小さい自然 数にしなさい。


- ① $\triangle OAB$ の面積と $\triangle ABC$ の面積の比が 1:3 となるとき、点 C の座標を求めなさい。
- ② $\triangle ABD$ が $\angle ADB = 90^{\circ}$ の直角三角形となるとき、点 D の座標を求めなさい。

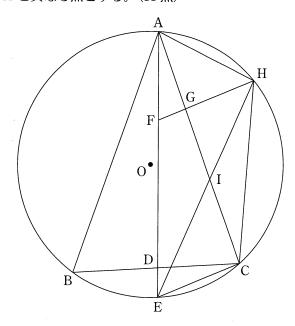
4 あとの各問いに答えなさい。(6点)

(1) 右の図のように、点A、B、C、D、E、F、G、Hを頂点とし、AE = 6 cm、EF = 9 cm、FG = 3 cmの直方体Pがある。直方体Pの対角線DF上に点Iをとり、4点E、F、H、Iを結んで三角すいQをつくる。

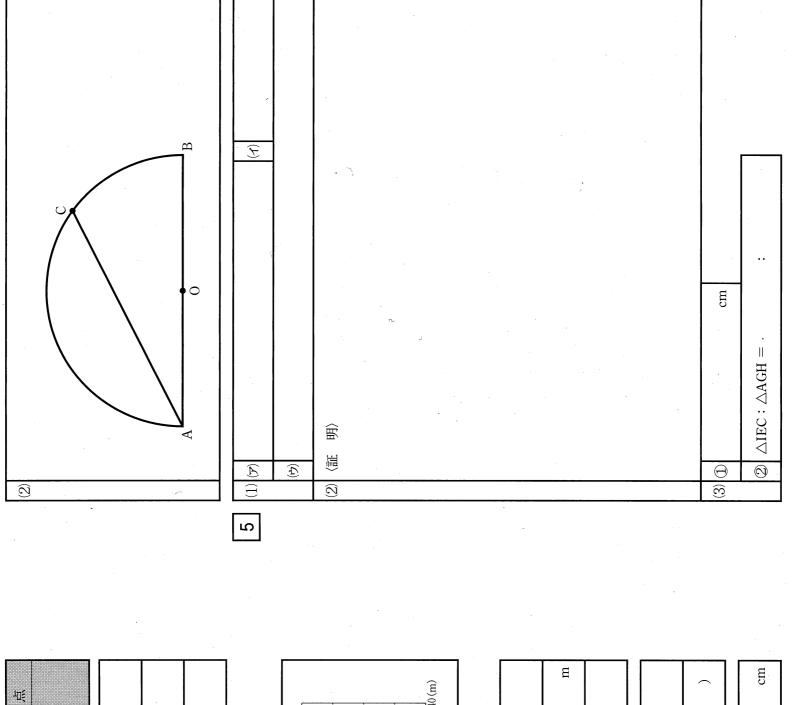

三角すい Q の体積が直方体 P の体積の $\frac{1}{9}$ のとき、次の各間いに答えなさい。

なお、各問いにおいて、答えの分母に $\sqrt{}$ がふくまれるときは、分母を有理化しなさい。 また、 $\sqrt{}$ の中をできるだけ小さい自然数にしなさい。

- ① △EFH を底面としたときの三角すい Q の高さを求めなさい。
- ② 線分 EI の長さを求めなさい。
- (2) 次の図で、線分ABを直径とする半円の $\tilde{\mathbf{u}}$ AB上に点 C があり、線分ABの中点を O とするとき、 \angle OBD = 90°、 \angle DOB = \angle CAO となる直角三角形 DOB を 1 つ、定規とコンパスを用いて作図しなさい。


なお、作図に用いた線は消さずに残しておきなさい。

多数の図のように、円0の円周上に3点A、B、Cをとり、 \triangle ABCをつくる。 \angle BACの二等分線と線分BC、円0との交点をそれぞれD、Eとし、線分ECをひく。線分AE上にEC=AFとなる点Fをとり、点Fを通り線分ECと平行な直線と線分AC、点Bをふくまない弧ACとの交点をそれぞれG、Hとし、線分AHと線分CHをひく。また、線分EHと線分ACとの交点をIとする。


このとき, あとの各問いに答えなさい。

ただし, 点 E は点 A と異なる点とする。(11 点)

(1) 次の は、 \triangle AIH ∞ \triangle HIG であることを証明したものである。 に、それぞれあてはまる適切なことがらを書き入れなさい。 〈証 明〉 \triangle AIH と \triangle HIG において、 共通な角だから, (**P**) $\cdots \textcircled{1}$ 弧 AE に対する円周角は等しいから、 ...(2) ∠AHI = (1) FH//ECより、平行線の錯角は等しいから、 (1) ...(3) ∠HGI ②, ③より, ∠AHI = ∠HGI ...(4) ①, ④より, がそれぞれ等しいので, △AIH ∽ △HIG

- (2) $\triangle AFG \equiv \triangle CED$ であることを証明しなさい。
- (3) AF = 6 cm, FG = 2 cm, GH = 5 cm のとき, 次の各問いに答えなさい。
 - ① 線分 FE の長さを求めなさい。
 - ② \triangle IEC $\ge \triangle$ AGH の面積の比を、最も簡単な整数の比で表しなさい。

俥

阜

梅

検

欧

9

(2)

4

8

|| |}

()

ш

A組

B組.

 \bigcirc

(3)

<u>(2</u>

 \bigcirc

0

(B)

(2) (A)

(ii)

(i)

走った道のり

ш

歩いた道のり

(3)

(3)

=u

<u>(0)</u>

D(

(3)

C(

(3)

A (

က

cm

(1)

4

<u>(7)</u>

 \Diamond K8 (501—4)

問題		配点	正答例	備 考	
1	(1)		1点	- 5 6	
13点	(2)		1点	$\frac{2}{15}x$	
	(3)		1点	3 <i>y</i>	
	(4)		2点	$4 \ a - 3 \ b$	
	(5) 2点		2点	$-8 + 3\sqrt{21}$	
	(6) 2点		2点	$y = -\frac{1.6}{x}$	
	(7) 2点		2点	$x = \frac{-5 \pm \sqrt{4 1}}{4}$	
	(8)		2点	0, 1, 2, 3	* すべて正答の場合のみ, 2点。* 順不同。
2	(1) ① 1 .5		1点	19 m	
12点	2点 ②		2点	A組 B組 5 10 15 20 25 30 35 40(m)	
		③ (i)	1点	1	
		(ii)	1点	ウ	
	(2)	① (A)	1点	ア	* (A), (B)両方正答の場合のみ, 1点。
		(B)		ケ	1 /巛0
		(C)	1点	1	* (C), (D)両方正答の場合のみ, 1点。
		(D)		ウ	1 ////0
		2	1点	歩いた道のり750m , 走った道のり450m	* すべて正答の場合のみ、1点。
	(3)	1)	2点	<u>3</u> 10	
		2	2点	$n = 1 \ 0 \ , \ 1 \ 2$	* すべて正答の場合のみ, 2点。* 順不同。
3	(1)		2点	A $(-2, 1)$	
8点	(2) 2 点 y		2点	$y = \frac{1}{2} x + 2$	
	(3)	1	2点	C (8 , 0)	
		2	2点	D $(1+\sqrt{5})$, 0)	

4	(1)	1	1点	4 cm	
6点		2	2点	√29 cm	
	(2)		3点		・ ①が示せて、1点。・ ②が示せて、1点。* 数学的な推論をもとに、作図されていればよい。
5	(1)	(7)	1 点	∠AIH=∠HIG	
11点		(1)	1点	∠ACE	
		(ウ)	1点	2組の角	
(2) 4点		4 点	〈証 明〉 $ \triangle AFG \& \triangle CED において, \\ (仮定より, AF=CE & \cdot \cdot \cdot ①) \\ FH \# EC \& L & + \cdot \cdot ① \\ FH \# EC \& L & + \cdot \cdot ② \\ $	 ①の証明ができて、1点。 ②の証明ができて、1点。 ⑤の証明ができて、1点。 * 数学的な推論の過程が、的確に表現されていればよい。 	
	(3)	1	2 点	12 cm	
		2	2点	$\triangle I E C : \triangle A G H = 72 : 55$	
合 計		50点			